论文标题

斯坦变异减少了贝叶斯反演的基础

Stein variational reduced basis Bayesian inversion

论文作者

Chen, Peng, Ghattas, Omar

论文摘要

我们提出和分析了Stein变分还原方法(SVRB),以解决大规模PDE受限的贝叶斯逆问题。为了解决绘制需要昂贵PDE从后验分布求解的许多样本的计算挑战,我们将一种自适应和面向目标的模型还原技术与基于优化的Stein变异梯度下降方法(SVGD)相结合。样品是从先前的分布中得出的,并通过一系列由SVGD构建的传输图将其推到后部,需要评估势---可能性函数的负log-以及其相对于随机参数的梯度,这些参数取决于PDE的解决方案。为了降低计算成本,我们根据减少基础近似值来开发一种自适应和目标模型减少技术,以评估潜力及其梯度。我们为电势及其梯度的减少基础近似误差(通过Kullback-leibler Divergence测量的后验分布的诱发误差以及样品的误差)提供了详细的分析。为了证明SVRB的计算准确性和效率,我们报告了贝叶斯反问题的数值实验结果,该贝叶斯反问题由具有均匀和高斯先验分布的随机参数的扩散PDE控制。可以实现超过100倍的速度,同时保留电势及其梯度的准确性。

We propose and analyze a Stein variational reduced basis method (SVRB) to solve large-scale PDE-constrained Bayesian inverse problems. To address the computational challenge of drawing numerous samples requiring expensive PDE solves from the posterior distribution, we integrate an adaptive and goal-oriented model reduction technique with an optimization-based Stein variational gradient descent method (SVGD). The samples are drawn from the prior distribution and iteratively pushed to the posterior by a sequence of transport maps, which are constructed by SVGD, requiring the evaluation of the potential---the negative log of the likelihood function---and its gradient with respect to the random parameters, which depend on the solution of the PDE. To reduce the computational cost, we develop an adaptive and goal-oriented model reduction technique based on reduced basis approximations for the evaluation of the potential and its gradient. We present a detailed analysis for the reduced basis approximation errors of the potential and its gradient, the induced errors of the posterior distribution measured by Kullback--Leibler divergence, as well as the errors of the samples. To demonstrate the computational accuracy and efficiency of SVRB, we report results of numerical experiments on a Bayesian inverse problem governed by a diffusion PDE with random parameters with both uniform and Gaussian prior distributions. Over 100X speedups can be achieved while the accuracy of the approximation of the potential and its gradient is preserved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源