论文标题
连续时间多状态捕获回收模型
Continuous-time multi-state capture-recapture models
论文作者
论文摘要
多状态捕获收件数据包括个人特定的目击历史以及有关个人状态相关的信息,例如与繁殖状态,感染水平或地理位置相关的信息。通常使用Arnason-Schwarz模型对此类数据进行分析,其中使用离散时间马尔可夫链对状态之间的过渡进行建模,从而使该模型最容易适用于常规时间序列。当捕获场合之间的时间间隔不相等时,可能需要更复杂的时间依赖性结构,从而增加估计参数的数量,降低可解释性,并可能导致精度降低。在这里,我们开发了一种新型的连续时间多状态模型,可以将其视为不规则采样数据的Arnason-Schwarz模型的类似物。统计推断是通过将捕获重新接收数据数据作为连续隐藏马尔可夫模型实现的实现来实现的,该模型允许使用相关的有效算法用于最大似然估计和状态解码。为了说明建模框架的可行性,我们使用对瓶塞海豚的长期调查,其中捕获场合并未经常在时间上进行捕获。在这里,我们对季节性影响苏格兰东海岸的海豚运动率的影响特别感兴趣。结果揭示了其范围两个核心区域之间的季节性运动模式,提供了可以为保护管理提供信息的信息。
Multi-state capture-recapture data comprise individual-specific sighting histories together with information on individuals' states related, for example, to breeding status, infection level, or geographical location. Such data are often analysed using the Arnason-Schwarz model, where transitions between states are modelled using a discrete-time Markov chain, making the model most easily applicable to regular time series. When time intervals between capture occasions are not of equal length, more complex time-dependent constructions may be required, increasing the number of parameters to estimate, decreasing interpretability, and potentially leading to reduced precision. Here we develop a novel continuous-time multi-state model that can be regarded as an analogue of the Arnason-Schwarz model for irregularly sampled data. Statistical inference is carried out by regarding the capture-recapture data as realisations from a continuous-time hidden Markov model, which allows the associated efficient algorithms to be used for maximum likelihood estimation and state decoding. To illustrate the feasibility of the modelling framework, we use a long-term survey of bottlenose dolphins where capture occasion are not regularly spaced through time. Here we are particularly interested in seasonal effects on the movement rates of the dolphins along the Scottish east coast. The results reveal seasonal movement patterns between two core areas of their range, providing information that will inform conservation management.