论文标题

定期驱动的介质导体中的相干传输:从散射矩阵到量子热力学

Coherent Transport in Periodically Driven Mesoscopic Conductors: From Scattering Matrices to Quantum Thermodynamics

论文作者

Brandner, Kay

论文摘要

散射理论是描述介质系统中传输现象的标准工具。在这里,我们为通过振荡电场或磁场驱动的纳米级导体提供了这种方法的详细推导。我们的方法是基于将常规的Lippmann-Schwinger形式主义扩展到具有定期依赖性汉密尔顿的系统的。作为关键结果,我们获得了用于浮子散射幅度的系统扰动方案,该方案描述了传输载体通过定期驱动的样品的过渡。在一般的多末端设置中,我们得出了物质和能量电流的平均值和时间集成相关函数或零频率噪声的微观表达式,从而统一了早期研究的结果。我们表明,该框架本质上与热力学的第一和第二定律一致,并证明只有当系统中的所有电流为零时,熵产生的平均速率才会消失。作为一种应用,我们得出了广义的绿色 - 库博关系,这使得有可能在适当选择的电流之间表达任何平均电流对温度和化学势梯度的较小变化的响应。最后,我们讨论了未来研究的潜在主题,并在随机和量子热力学中进一步达到量子散射方法的进一步应用。

Scattering theory is a standard tool for the description of transport phenomena in mesoscopic systems. Here, we provide a detailed derivation of this method for nano-scale conductors that are driven by oscillating electric or magnetic fields. Our approach is based on an extension of the conventional Lippmann-Schwinger formalism to systems with a periodically time dependent Hamiltonian. As a key result, we obtain a systematic perturbation scheme for the Floquet scattering amplitudes that describe the transition of a transport carrier through a periodically driven sample. Within a general multi-terminal setup, we derive microscopic expressions for the mean values and time-integrated correlation functions, or zero-frequency noise, of matter and energy currents, thus unifying the results of earlier studies. We show that this framework is inherently consistent with the first and the second law of thermodynamics and prove that the mean rate of entropy production vanishes only if all currents in the system are zero. As an application, we derive a generalized Green-Kubo relation, which makes it possible to express the response of any mean currents to small variations of temperature and chemical potential gradients in terms of time integrated correlation functions between properly chosen currents. Finally, we discuss potential topics for future studies and further reaching applications of the Floquet scattering approach to quantum transport in stochastic and quantum thermodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源