论文标题

DDET:现实世界图像超分辨率的双路线动态增强网络

DDet: Dual-path Dynamic Enhancement Network for Real-World Image Super-Resolution

论文作者

Shi, Yukai, Zhong, Haoyu, Yang, Zhijing, Yang, Xiaojun, Lin, Liang

论文摘要

与传统的图像超分辨率任务不同,真实图像超分辨率(实际SR)着重于现实世界高分辨率(HR)和低分辨率(LR)图像之间的关系。大多数传统图像SR通过应用固定的下采样操作员获得LR样品。 REAL-SR通过合并不同质量的光传感器来获得LR和HR图像对。通常,Real-SR面临更多的挑战,并且更广泛的应用程序场景。上一个图像SR方法无法在实际-SR上表现出相似的性能,因为图像数据并非固有地对齐。在本文中,我们为REAL-SR提出了一个双路径动态增强网络(DDET),该网络通过实现双向动态亚像素加权聚合和细化来解决跨摄像机图像映射。与堆叠大量卷积块以进行特征表示的传统方法不同,我们介绍了一个内容感知的框架,以研究图像SR问题中的非亲密图像对。首先,我们使用内容自适应组件来表现多尺度动态注意力(MDA)。其次,我们将长期的跳过连接与耦合的细节操纵(CDM)结合在一起,以执行协作补偿和操纵。上述双路径模型是一个统一模型,并进行了协作。关于具有挑战性的基准测试的广泛实验证明了我们模型的优势。

Different from traditional image super-resolution task, real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image. Most of the traditional image SR obtains the LR sample by applying a fixed down-sampling operator. Real-SR obtains the LR and HR image pair by incorporating different quality optical sensors. Generally, Real-SR has more challenges as well as broader application scenarios. Previous image SR methods fail to exhibit similar performance on Real-SR as the image data is not aligned inherently. In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR, which addresses the cross-camera image mapping by realizing a dual-way dynamic sub-pixel weighted aggregation and refinement. Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair in image SR issue. First, we use a content-adaptive component to exhibit the Multi-scale Dynamic Attention(MDA). Second, we incorporate a long-term skip connection with a Coupled Detail Manipulation(CDM) to perform collaborative compensation and manipulation. The above dual-path model is joint into a unified model and works collaboratively. Extensive experiments on the challenging benchmarks demonstrate the superiority of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源