论文标题
纠缠和测量问题
Entanglement and the measurement problem
论文作者
论文摘要
冯·诺伊曼(Von Neumann)预测在量子测量过程中出现的纠缠“测量态”(MS)似乎显示出矛盾的特性,例如多个宏观结果。但是使用纠缠光子对的干涉测量实验的分析表明,纠缠状态与简单叠加状态出人意料不同。基于标准量子理论,本文表明,(i)MS不代表多个检测器读数,而是代表系统状态和检测器读数之间的非多氧化多重统计相关性,(ii)实际上发生了一个结果,并且(iii)发生一个结果,另一个结果同时非局部崩溃。点(iii)解决了爱因斯坦(Einstein)于1927年首次提出的一个问题,他证明了量子理论需要瞬时状态崩溃。这个难题的决议需要非局部相关性,从今天的角度来看,这意味着MS必须是一个纠缠状态。因此,与以前假定的测量问题无法溶解性的证据相反,我们发现MS是崩溃的状态,正是我们对测量的期望。
The entangled "measurement state" (MS), predicted by von Neumann to arise during quantum measurement, seems to display paradoxical properties such as multiple macroscopic outcomes. But analysis of interferometry experiments using entangled photon pairs shows that entangled states differ surprisingly from simple superposition states. Based on standard quantum theory, this paper shows that (i) the MS does not represent multiple detector readings but instead represents nonparadoxical multiple statistical correlations between system states and detector readings, (ii) exactly one outcome actually occurs, and (iii) when one outcome occurs, the other possible outcomes simultaneously collapse nonlocally. Point (iii) resolves an issue first raised in 1927 by Einstein who demonstrated that quantum theory requires instantaneous state collapse. This conundrum's resolution requires nonlocal correlations, which from today's perspective implies the MS must be an entangled state. Thus, contrary to previous presumed proofs of the measurement problem's insolubility, we find the MS to be the collapsed state and just what we expect upon measurement.