论文标题
在任何量子过程中,热力学耗散的初始状态依赖性
Initial-State Dependence of Thermodynamic Dissipation for any Quantum Process
论文作者
论文摘要
通过考虑系统,其环境和它们之间的相关性的所有可能变化,可以获得任意时间尺度上开放量子系统的非平衡热力学的新的确切结果。首先,我们为熵产生获得了新的量子信息理论平等,对系统和环境的任意初始关节状态有效。对于任何有固定初始环境的有限时间过程,我们就表明系统的区别(相对于微小耗散状态)的收缩恰好量化了其热力学耗散。这种耗散的量子成分是相对于微小耗散状态相对于相干性的变化。探索了对量子状态准备和局部控制的影响。对于单身过程(例如准备任何特定的量子状态),我们发现,随着实际初始状态与预期的原始状态变得正交,期望不匹配会导致耗散。
New exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales are obtained by considering all possible variations of initial conditions of a system, its environment, and correlations between them. First we obtain a new quantum-information theoretic equality for entropy production, valid for an arbitrary initial joint state of system and environment. For any finite-time process with a fixed initial environment, we then show that the contraction of the system's distinction -- relative to the minimally dissipative state -- exactly quantifies its thermodynamic dissipation. The quantum component of this dissipation is the change in coherence relative to the minimally dissipative state. Implications for quantum state preparation and local control are explored. For nonunitary processes -- like the preparation of any particular quantum state -- we find that mismatched expectations lead to divergent dissipation as the actual initial state becomes orthogonal to the anticipated one.