论文标题

共识:它会变得更容易吗?

Consensus-Halving: Does It Ever Get Easier?

论文作者

Filos-Ratsikas, Aris, Hollender, Alexandros, Sotiraki, Katerina, Zampetakis, Manolis

论文摘要

在$ \ varepsilon $ -consensus-halaLaL的问题,一个公平部门的基本问题中,有$ n $ n $代理商在间隔$ [0,1] $上具有估值,目标是将间隔分成几块,并将标签“ $+$”或“ $ - $”分配给每个代理商,以使每个代理商都值均等$ $+ - $+” $+”。 Filos-Ratsikas和Goldberg [2019]最近证明了这个问题,是计算类PPA的第一个“自然”完整问题,回答了一个十年的开放问题。 在本文中,我们研究了问题在限制估值功能的情况下易于解决的程度。为此,我们提供以下贡献。首先,我们得到[Filos-Ratsikas和Goldberg,2019]的PPA - 顽固性结果,因为代理只有两个区块具有分段均匀估值的情况。我们通过新的减少来获得此结果,实际上,这比[Filos-Ratsikas and Goldberg,2019]中的相应的概念上要简单得多。然后,我们考虑单个块(统一)估值的情况,并为任何$ \ varepsilon $以及$ \ varepsilon = 1/2 $的多项式时间算法提供了用于解决$ \ varepsilon $ -consensus-halaging $ \ varepsilon $的情况。最后,我们新技术的一个重要应用是共识达成共识的第一个硬度结果,共识 - $ 1/k $ - 划分问题[Simmons and Su,2003]。特别是,我们证明$ \ varepsilon $ -consensus- $ 1/3 $ - 划分是ppad-hard。

In the $\varepsilon$-Consensus-Halving problem, a fundamental problem in fair division, there are $n$ agents with valuations over the interval $[0,1]$, and the goal is to divide the interval into pieces and assign a label "$+$" or "$-$" to each piece, such that every agent values the total amount of "$+$" and the total amount of "$-$" almost equally. The problem was recently proven by Filos-Ratsikas and Goldberg [2019] to be the first "natural" complete problem for the computational class PPA, answering a decade-old open question. In this paper, we examine the extent to which the problem becomes easy to solve, if one restricts the class of valuation functions. To this end, we provide the following contributions. First, we obtain a strengthening of the PPA-hardness result of [Filos-Ratsikas and Goldberg, 2019], to the case when agents have piecewise uniform valuations with only two blocks. We obtain this result via a new reduction, which is in fact conceptually much simpler than the corresponding one in [Filos-Ratsikas and Goldberg, 2019]. Then, we consider the case of single-block (uniform) valuations and provide a parameterized polynomial time algorithm for solving $\varepsilon$-Consensus-Halving for any $\varepsilon$, as well as a polynomial-time algorithm for $\varepsilon=1/2$. Finally, an important application of our new techniques is the first hardness result for a generalization of Consensus-Halving, the Consensus-$1/k$-Division problem [Simmons and Su, 2003]. In particular, we prove that $\varepsilon$-Consensus-$1/3$-Division is PPAD-hard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源