论文标题
可分开的Banach空间上的Kuelbs-Steadman空间
Kuelbs-Steadman spaces on Separable Banach spaces
论文作者
论文摘要
本文的目的是构建一类新的可分开的Banach空间$ \ k^p [\ mathbb {b}],\; 1 \ leq p \ leq \ infty $。这些空间中的每个空间都包含$ \ mcl^p [\ mathbb {b}] $空间,以及有限添加度量的空间$ \ mfm [\ r^\ iy] $,作为密集的连续紧凑型嵌入。这些空间很有趣,因为它们还包含$ \ mathbb {b} $上的Henstock-Kurzweil集成功能。最后,我们为$ \ k^p [\ mathbb {b}]上的傅立叶变换提供了一种有趣的方法。$
The purpose of this paper is to construct a new class of separable Banach spaces $\K^p[\mathbb{B}], \; 1\leq p \leq \infty$. Each of these spaces contain the $ \mcL^p[\mathbb{B}] $ spaces, as well as the space $\mfM[\R^\iy]$, of finitely additive measures as dense continuous compact embeddings. These spaces are of interest because they also contain the Henstock-Kurzweil integrable functions on $\mathbb{B}$. Finally, we offer a interesting approach to the Fourier transform on $\K^p[\mathbb{B}].$