论文标题
最大易发的真实三角曲线
Maximally inflected real trigonal curves on Hirzebruch surfaces
论文作者
论文摘要
在2014年,A。Degtyarev,I。在本文中,提到的结果扩展到了〜ii类型的最大变化的真实三角曲线,超过$ b = \ mathbb {p}^1 $。与往常一样,此类曲线的结果扩展到具有所有奇异纤维的真实雅各布椭圆表面。
In 2014 A. Degtyarev, I. Itenberg and the author gave a description, up to fiberwise equivariant deformations, of maximally inflected real trigonal curves of type~I (over a base $ B $ of an arbitrary genus) in terms of the combinatorics of sufficiently simple graphs and for $ B=\mathbb{P}^1 $ obtained a complete classification of such curves. In this paper, the mentioned results are extended to maximally inflected real trigonal curves of type~II over $ B=\mathbb{P}^1 $. As usual, the results for such curves are extended to real Jacobian elliptic surfaces with all singular fibers real.