论文标题

关于Erd \ H OS,Kleitman和Lemke的反向问题

On an inverse problem of Erd\H os, Kleitman, and Lemke

论文作者

Zhong, Qinghai

论文摘要

令$(g,1_g)$为有限组,让$ s = g_1 \ bdot \ ldots \ bdot \ bdot g _ {\ ell} $是$ g $的非空序列。我们说$ s $是一个很小的产品序列,如果可以订购其术语以使其产品等于$ 1_g $和$ \ sum_ {i = 1}^{\ ell} {\ ell} \ frac {1} {\ ord(g_i)} \ le 1 $。令$ \ mathsf {ti}(g)$为最小的整数$ t $,以使每个序列$ s $ the $ g $ a $ | s | s | \ ge t $具有一个很小的产品 - 一个子序列。直接问题是获得$ \ Mathsf {ti}(g)$的确切值,而逆问题是表征没有$ g $的长序列的结构,而$ g $没有微小的产品 - 一个子序列。在本文中,我们考虑了环状群体的逆问题,并且还研究了二面体和双环组的直接和反问题。

Let $(G, 1_G)$ be a finite group and let $S=g_1\bdot \ldots\bdot g_{\ell}$ be a nonempty sequence over $G$. We say $S$ is a tiny product-one sequence if its terms can be ordered such that their product equals $1_G$ and $\sum_{i=1}^{\ell}\frac{1}{\ord(g_i)}\le 1$. Let $\mathsf {ti}(G)$ be the smallest integer $t$ such that every sequence $S$ over $G$ with $|S|\ge t$ has a tiny product-one subsequence. The direct problem is to obtain the exact value of $\mathsf {ti}(G)$, while the inverse problem is to characterize the structure of long sequences over $G$ which have no tiny product-one subsequences. In this paper, we consider the inverse problem for cyclic groups and we also study both direct and inverse problems for dihedral groups and dicyclic groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源