论文标题

稀疏深度学习的不确定性量化

Uncertainty Quantification for Sparse Deep Learning

论文作者

Wang, Yuexi, Ročková, Veronika

论文摘要

在理论和实践中,深度学习方法继续对机器学习产生确定的影响。恢复无限的尺寸对象(曲线或密度)时,统计理论发展主要与近似性或估计率有关。尽管有一系列令人印象深刻的可用理论结果,但文献在很大程度上对深度学习的不确定性量化持续了沉默。本文通过采用贝叶斯的角度朝着这一重要方向迈出了一步。我们研究了非参数回归中稀疏深度架构的后验分布的某些方面的高斯近似性。在贝叶斯非参数的工具的基础上,我们为线性和二次功能提供了半参数的伯恩斯坦 - 冯·米斯定理,这可以保证暗示贝叶斯可信区域具有有效的频繁覆盖范围。我们的结果为(贝叶斯)深度学习提供了新的理论理由,并强调了它们的推论潜力。

Deep learning methods continue to have a decided impact on machine learning, both in theory and in practice. Statistical theoretical developments have been mostly concerned with approximability or rates of estimation when recovering infinite dimensional objects (curves or densities). Despite the impressive array of available theoretical results, the literature has been largely silent about uncertainty quantification for deep learning. This paper takes a step forward in this important direction by taking a Bayesian point of view. We study Gaussian approximability of certain aspects of posterior distributions of sparse deep ReLU architectures in non-parametric regression. Building on tools from Bayesian non-parametrics, we provide semi-parametric Bernstein-von Mises theorems for linear and quadratic functionals, which guarantee that implied Bayesian credible regions have valid frequentist coverage. Our results provide new theoretical justifications for (Bayesian) deep learning with ReLU activation functions, highlighting their inferential potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源