论文标题
基于石墨烯的纳米结构中旋转轨道耦合的电气控制,旋转对称性断裂
Electric control of spin orbit coupling in graphene-based nanostructures with broken rotational symmetry
论文作者
论文摘要
旋转和角动量是纳米光子学的重要自由度,控制光的传播,光学力和信息编码。通常,使用Q板或空间光调节器生成光学角动量。在这里,我们表明,旋转对称性断裂的石墨烯支持的等离子纳米结构为轨道角动量转换提供了令人惊讶的旋转,可以通过改变石墨烯的电化学潜力来连续控制。在通过圆极化平面波的共振照明后,在石墨烯薄片上的二键蛋白氧化物纳米颗粒的多边形阵列会产生带有电气可调的轨道角动量的散射场。这种独特的光子自旋轨道耦合发生是由于石墨烯等离子体偏振子和纳米颗粒的局部表面等离子的强耦合,并导致石墨烯等离子的受控方向激发。可调的旋转轨道转换铺平了在光学通信中编码的高速信息,光镊中的电动转向功能以及高维纠缠光子状态的纳米尺寸。
Spin and angular momenta of light are important degrees of freedom in nanophotonics which control light propagation, optical forces and information encoding. Typically, optical angular momentum is generated using q-plates or spatial light modulators. Here, we show that graphene-supported plasmonic nanostructures with broken rotational symmetry provide a surprising spin to orbital angular momentum conversion, which can be continuously controlled by changing the electrochemical potential of graphene. Upon resonant illumination by a circularly polarized plane wave, a polygonal array of indium-tin-oxide nanoparticles on a graphene sheet generates scattered field carrying electrically-tunable orbital angular momentum. This unique photonic spin-orbit coupling occurs due to the strong coupling of graphene plasmon polaritons and localised surface plasmons of the nanoparticles and leads to the controlled directional excitation of graphene plasmons. The tuneable spin-orbit conversion pave the way to high-rate information encoding in optical communications, electric steering functionalities in optical tweezers, and nanorouting of higher-dimensional entangled photon states.