论文标题
hankel张量Arima的块,用于多个短时间序列预测
Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting
论文作者
论文摘要
这项工作为多个时间序列预测提出了一种新颖的方法。首先,使用多路延迟嵌入变换(MDT)代表时间序列为低级块Hankel张量(BHT)。然后,通过施加塔克分解,预计高阶张量可以压缩核心张量。同时,在连续的核心张量上明确使用了广义的张量自回旋整合运动平均值(ARIMA),以预测未来的样品。通过这种方式,提出的方法在战术上融合了MDT张力的独特优势(利用相互关联)和张量Arima以及低级别的Tucker分解为统一的框架。该框架利用了嵌入式空间中的块汉克尔张量的低级结构,并捕获了多个TS之间的固有相关性,因此可以改善预测结果,尤其是对于多个短时间序列。在三个公共数据集和两个工业数据集上进行的实验证明,与最先进的方法相比,所提出的BHT-Arima有效提高了预测准确性,并降低了计算成本。
This work proposes a novel approach for multiple time series forecasting. At first, multi-way delay embedding transform (MDT) is employed to represent time series as low-rank block Hankel tensors (BHT). Then, the higher-order tensors are projected to compressed core tensors by applying Tucker decomposition. At the same time, the generalized tensor Autoregressive Integrated Moving Average (ARIMA) is explicitly used on consecutive core tensors to predict future samples. In this manner, the proposed approach tactically incorporates the unique advantages of MDT tensorization (to exploit mutual correlations) and tensor ARIMA coupled with low-rank Tucker decomposition into a unified framework. This framework exploits the low-rank structure of block Hankel tensors in the embedded space and captures the intrinsic correlations among multiple TS, which thus can improve the forecasting results, especially for multiple short time series. Experiments conducted on three public datasets and two industrial datasets verify that the proposed BHT-ARIMA effectively improves forecasting accuracy and reduces computational cost compared with the state-of-the-art methods.