论文标题
通过数字分析相互作用近似量子近似优化算法
Approximating the quantum approximate optimization algorithm with digital-analog interactions
论文作者
论文摘要
提出了量子近似优化算法作为解决近期量子计算机上的组合优化问题的启发式方法,可能是在量化后的量化,嘈杂的,中等程度的量子计算时代中进行有用的计算的算法之一。在这项工作中,我们利用了最近提出的数字分析量子计算范式,其中可编程通用量子计算机的多功能性和量子模拟器的误差能力合并为改善量子计算的平台。我们表明,由于其对相干误差的固有弹性,通过执行大规模模拟并为其在具有有限单点操作时间的设备的设备中提供了分析范围,因此数字分析范式适用于变异量子近似优化算法。我们观察到单量操作速度的机制,在该方案中,所考虑的变异算法对非变种式对应物提供了显着改善。
The quantum approximate optimisation algorithm was proposed as a heuristic method for solving combinatorial optimisation problems on near-term quantum computers and may be among the first algorithms to perform useful computations in the post-supremacy, noisy, intermediate scale era of quantum computing. In this work, we exploit the recently proposed digital-analog quantum computation paradigm, in which the versatility of programmable universal quantum computers and the error resilience of quantum simulators are combined to improve platforms for quantum computation. We show that the digital-analog paradigm is suited to the variational quantum approximate optimisation algorithm, due to its inherent resilience against coherent errors, by performing large-scale simulations and providing analytical bounds for its performance in devices with finite single-qubit operation times. We observe regimes of single-qubit operation speed in which the considered variational algorithm provides a significant improvement over non-variational counterparts.