论文标题

春季:非平滑非凸优化的快速随机近端交替方法

SPRING: A fast stochastic proximal alternating method for non-smooth non-convex optimization

论文作者

Driggs, Derek, Tang, Junqi, Liang, Jingwei, Davies, Mike, Schönlieb, Carola-Bibiane

论文摘要

我们介绍了Spring,这是一种新型随机近端交替线性化最小化算法,用于解决一类非平滑和非凸优化问题。由于数据采集和计算功能的进步,大规模的成像问题越来越普遍。由随机优化方法的成功激发,我们提出了近端交替的线性最小化(PALM)算法的随机变体\ cite {Bolte2014proximal}。我们提供全局收敛的保证,表明我们提出的具有差异的随机梯度估计器的方法,例如saga \ cite {saga}和sarah \ cite {sarah},可以实现最先进的甲骨文甲骨文复杂性。我们还通过几个数值示例,包括稀疏的非阴性基质分解,稀疏主成分分析和盲图像反卷积,证明了算法的功效。

We introduce SPRING, a novel stochastic proximal alternating linearized minimization algorithm for solving a class of non-smooth and non-convex optimization problems. Large-scale imaging problems are becoming increasingly prevalent due to advances in data acquisition and computational capabilities. Motivated by the success of stochastic optimization methods, we propose a stochastic variant of proximal alternating linearized minimization (PALM) algorithm \cite{bolte2014proximal}. We provide global convergence guarantees, demonstrating that our proposed method with variance-reduced stochastic gradient estimators, such as SAGA \cite{SAGA} and SARAH \cite{sarah}, achieves state-of-the-art oracle complexities. We also demonstrate the efficacy of our algorithm via several numerical examples including sparse non-negative matrix factorization, sparse principal component analysis, and blind image deconvolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源