论文标题

数字字段中的规范关系和计算问题

Norm relations and computational problems in number fields

论文作者

Biasse, Jean-François, Fieker, Claus, Hofmann, Tommy, Page, Aurel

论文摘要

对于有限的组$ g $,我们在组代数$ \ mathbb q [g] $中引入了规范关系的概括。我们为存在这种关系提供了必要和充分的标准,并将其应用于与Galois组$ g $的代数数字字段正常扩展的子场的算术不变性之间的关系。在算法方面,这导致了基于子场的算法,用于计算整数,$ s $单位组和班级组。对于$ s $单位组计算,这将使子场中的相应问题的多项式时间缩短。我们计算GRH下的大数字段的班级组,以及循环组磁场的类数量的新的无条件值。

For a finite group $G$, we introduce a generalization of norm relations in the group algebra $\mathbb Q[G]$. We give necessary and sufficient criteria for the existence of such relations and apply them to obtain relations between the arithmetic invariants of the subfields of a normal extension of algebraic number fields with Galois group $G$. On the algorithmic side this leads to subfield based algorithms for computing rings of integers, $S$-unit groups and class groups. For the $S$-unit group computation this yields a polynomial time reduction to the corresponding problem in subfields. We compute class groups of large number fields under GRH, and new unconditional values of class numbers of cyclotomic fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源