论文标题
$ \ overline {\ Mathcal {m}} _ {g,n} $中的理性尾巴边界层的极端性
Extremality of Rational Tails Boundary Strata in $\overline{\mathcal{M}}_{g,n}$
论文作者
论文摘要
我们审查并开发了一些用于研究更高编码类别的有效锥的技术。我们的结果表明,在$ \ overline {\ Mathcal {m}} _ {g,n} $上,大量有理尾巴类型的边界层是极端的,它们的有效锥体是极端的,并提供了证据,证明了$ \ edimelline的所有边界层{作为推论,我们表明所有边界层在零属中都是极端的。
We review and develop some techniques used to investigate the effective cones of higher codimension classes. Our results show that a large collection of boundary strata of rational tails type are extremal in their effective cones on $\overline{\mathcal{M}}_{g,n}$ and provide evidence for the conjecture that all boundary strata of $\overline{\mathcal{M}}_{g,n}$ are extremal. As a corollary, we show that all boundary strata are extremal in genus zero.