论文标题
关于C(K)和FBL表格的Banach晶格[E]
On projective Banach lattices of the form C(K) and FBL[E]
论文作者
论文摘要
我们表明,如果Banach晶格是投影的,那么可以通过同构映射到$ C_0 $的基础上的每个有界序列都必须包含$ \ ell_1 $ -subsequence。结果,如果Banach Lattices $ \ ell_p $或$ fbl [e] $是投射的,则$ p = 1 $或$ e $分别具有Schur属性。另一方面,我们表明$ c(k)$每当$ k $都是绝对的社区缩回时,都是投射的,回答了Pagter和Wickstead的问题。
We show that if a Banach lattice is projective, then every bounded sequence that can be mapped by a homomorphism onto the basis of $c_0$ must contain an $\ell_1$-subsequence. As a consequence, if Banach lattices $\ell_p$ or $FBL[E]$ are projective, then $p=1$ or $E$ has the Schur property, respectively. On the other hand, we show that $C(K)$ is projective whenever $K$ is an absolute neighbourhood retract, answering a question by de Pagter and Wickstead.