论文标题

使用单眼前视车辆摄像头路遏制检测和定位

Road Curb Detection and Localization with Monocular Forward-view Vehicle Camera

论文作者

Panev, Stanislav, Vicente, Francisco, De la Torre, Fernando, Prinet, Véronique

论文摘要

我们提出了一种使用配备有鱼眼镜的校准的单眼相机,用于估计路缘3D参数(尺寸,位置,方向)的强大方法。在高级驾驶员援助系统(ADA)的背景下,自动遏制检测和定位尤为重要,即防止在垂直和对角线停车手术中可能碰撞和损坏车辆的保险杠。将3D几何推理与基于先进的检测方法相结合,我们的方法能够估计车辆以超过90%的平均准确性以及其方向,高度和深度的平均精度实时遏制距离。 我们的方法由两个不同的组成部分组成 - 每个单独的视频框架和时间分析中的遏制检测。第一部分包括复杂的路缘边缘提取和参数化的3D路缘模板拟合。因此,使用一些关于现实世界几何形状的假设,因此我们可以检索路缘的高度及其相对位置W.R.T.安装相机的移动车辆。用定向梯度的直方图(HOG)喂养的支持向量机(SVM)分类器用于基于外观的过滤异常值。在第二部分中,在时间域中跟踪检测到的路缘区域,以执行第二通过的假阳性拒绝。 我们已经在不同条件下的11个视频数据库中验证了我们的方法。我们已经使用点痛测量值和手动详尽的标签作为地面真相。

We propose a robust method for estimating road curb 3D parameters (size, location, orientation) using a calibrated monocular camera equipped with a fisheye lens. Automatic curb detection and localization is particularly important in the context of Advanced Driver Assistance System (ADAS), i.e. to prevent possible collision and damage of the vehicle's bumper during perpendicular and diagonal parking maneuvers. Combining 3D geometric reasoning with advanced vision-based detection methods, our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%, as well as its orientation, height and depth. Our approach consists of two distinct components - curb detection in each individual video frame and temporal analysis. The first part comprises of sophisticated curb edges extraction and parametrized 3D curb template fitting. Using a few assumptions regarding the real world geometry, we can thus retrieve the curb's height and its relative position w.r.t. the moving vehicle on which the camera is mounted. Support Vector Machine (SVM) classifier fed with Histograms of Oriented Gradients (HOG) is used for appearance-based filtering out outliers. In the second part, the detected curb regions are tracked in the temporal domain, so as to perform a second pass of false positives rejection. We have validated our approach on a newly collected database of 11 videos under different conditions. We have used point-wise LIDAR measurements and manual exhaustive labels as a ground truth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源