论文标题
RP-DNN:基于推文级别的传播环境基于深层神经网络,可在社交媒体上进行早期谣言检测
RP-DNN: A Tweet level propagation context based deep neural networks for early rumor detection in Social Media
论文作者
论文摘要
当有限,不完整和嘈杂的信息可用时,社交媒体平台上的早期谣言检测(ERD)非常具有挑战性。大多数现有方法主要用于事件级检测,该检测需要收集与特定事件相关的帖子,并且仅依赖于用户生成的内容。他们不适合在事件展开之前很早就发现谣言来源并变得广泛。在本文中,我们在消息级别上解决了ERD的任务。我们提出了一种新颖的混合神经网络体系结构,它结合了一个基于任务的双向语言模型,并堆叠了长期记忆(LSTM)网络,以表示输入源推文的文本内容和社交上的上下文,以建模其开发的早期阶段的谣言模型。我们将多层注意力模型应用于多个上下文输入,共同学习细心的上下文嵌入。我们的实验对七个公开可用的现实生活谣言事件数据集采用了严格的一对交叉验证(LOO-CV)评估设置。我们的模型实现了最先进的(SOA)性能,以检测大量增强数据的看不见的谣言,其中涵盖了12个以上的事件和2,967个谣言。进行消融研究以了解我们提出的模型的每个组成部分的相对贡献。
Early rumor detection (ERD) on social media platform is very challenging when limited, incomplete and noisy information is available. Most of the existing methods have largely worked on event-level detection that requires the collection of posts relevant to a specific event and relied only on user-generated content. They are not appropriate to detect rumor sources in the very early stages, before an event unfolds and becomes widespread. In this paper, we address the task of ERD at the message level. We present a novel hybrid neural network architecture, which combines a task-specific character-based bidirectional language model and stacked Long Short-Term Memory (LSTM) networks to represent textual contents and social-temporal contexts of input source tweets, for modelling propagation patterns of rumors in the early stages of their development. We apply multi-layered attention models to jointly learn attentive context embeddings over multiple context inputs. Our experiments employ a stringent leave-one-out cross-validation (LOO-CV) evaluation setup on seven publicly available real-life rumor event data sets. Our models achieve state-of-the-art(SoA) performance for detecting unseen rumors on large augmented data which covers more than 12 events and 2,967 rumors. An ablation study is conducted to understand the relative contribution of each component of our proposed model.