论文标题

估计浅回路输出的熵

On estimating the entropy of shallow circuit outputs

论文作者

Gheorghiu, Alexandru, Hoban, Matty J.

论文摘要

估计概率分布和量子状态的熵是信息处理的基本任务。在这里,我们检查了该任务的硬度,以概率分布或浅循环产生的量子状态。具体而言,我们表明,通过对数深度电路或恒定深度电路产生的分布或状态的熵估计至少与有误差(LWE)问题学习的扇形扇形和无界风扇,因此即使对有效的量子计算也是可怕的。这说明量子电路不需要复杂即可使熵的计算成为艰巨的任务。我们还提供了复杂性理论的证据,即对数深度电路的这个问题不如它与一般多项式大小的电路对应,似乎占据了中间硬度状态。最后,我们通过将我们的结果与ADS/CFT的批量到结合词典的复杂性联系起来,讨论我们工作在量子重力研究中的潜在应用。

Estimating the entropy of probability distributions and quantum states is a fundamental task in information processing. Here, we examine the hardness of this task for the case of probability distributions or quantum states produced by shallow circuits. Specifically, we show that entropy estimation for distributions or states produced by either log-depth circuits or constant-depth circuits with gates of bounded fan-in and unbounded fan-out is at least as hard as the Learning with Errors (LWE) problem, and thus believed to be intractable even for efficient quantum computation. This illustrates that quantum circuits do not need to be complex to render the computation of entropy a difficult task. We also give complexity-theoretic evidence that this problem for log-depth circuits is not as hard as its counterpart with general polynomial-size circuits, seemingly occupying an intermediate hardness regime. Finally, we discuss potential future applications of our work for quantum gravity research by relating our results to the complexity of the bulk-to-boundary dictionary of AdS/CFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源