论文标题

$ \ mathbb {a}^1 $ -CYLINDERS,$ \ MATHBB {A}^1 $ -Fibered表面

$\mathbb{A}^1$-cylinders over smooth $\mathbb{A}^1$-fibered surfaces

论文作者

Dubouloz, Adrien

论文摘要

我们给出了一般的结构定理,用于在光滑的准准注射表面上进行1启示。作为一种应用,我们表明,每条平滑的1纤维仿射表面非同构对线束的总空间在平滑的仿射曲线上都失败了Zariski取消问题。本注是2019年10月在Kinosaki代数几何研讨会上进行的演讲的扩展版本。

We give a general structure theorem for affine A 1-fibrations on smooth quasi-projective surfaces. As an application, we show that every smooth A 1-fibered affine surface non-isomorphic to the total space of a line bundle over a smooth affine curve fails the Zariski Cancellation Problem. The present note is an expanded version of a talk given at the Kinosaki Algebraic Geometry Symposium in October 2019.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源