论文标题
在一维量子临界点的一维化身中的木蓝色ZUREK机制
Kibble-Zurek mechanism in a one-dimensional incarnation of deconfined quantum critical point
论文作者
论文摘要
常规的木kurek机制(KZM)描述了Landau-Ginzburg-Wilson(LGW)自发对称性相变的驱动临界动力学。但是,尚未探讨KZM是否仍适用于除LGW范式超出LGW范式的解剖量子关键性中。在本文中,我们研究了铁磁(FM)相之间的一维量子临界点附近的驱动临界动力学,并研究了价值 - 荷兰 - 固定(VBS)相之间的驱动临界动力学。通过研究拓扑缺陷的密度依赖性对驾驶速率的依赖性,我们验证了该降低的临界点中的KZM。此外,我们发现FM和VBS顺序参数都可以满足整个驱动过程中的有限时间缩放。还研究了新兴对称性在非平衡动力学中的影响。
The conventional Kibble-Zurek mechanism (KZM) describes the driven critical dynamics in the Landau-Ginzburg-Wilson (LGW) spontaneous symmetry-breaking phase transitions. However, whether the KZM is still applicable in the deconfined quantum criticality, which is beyond the LGW paradigm, has not been explored. In this paper, we study the driven critical dynamics near a one-dimensional incarnation of deconfined quantum critical point between a ferromagnetic (FM) phase and a valance-bond-solid (VBS) phase. By investigating the dependence of the density of the topological defects on the driving rate, we verify the KZM in this Landau-forbidden critical point. Moreover, we find that both the FM and the VBS order parameters satisfy the finite-time scaling in the whole driven process. The effects of the emergent symmetry in the nonequilibrium dynamics are also studied.