论文标题

稳定单向水波火车在不平坦的底部

Stabilization of uni-directional water-wave trains over an uneven bottom

论文作者

Armaroli, Andrea, Gomel, Alexis, Chabchoub, Amin, Brunetti, Maura, Kasparian, Jérôme

论文摘要

我们研究了从底部不平坦的底部不稳定性发展而成的非线性表面重力水波包的演变。沿传播的空间变化的非线性Schrödinger方程(NLSE)用作参考模型。基于仅考虑三种复杂的谐波模式获得的低维近似,我们讨论了如何以坐在背景上的大峰的列车形式稳定一维模式并在很大的距离内传播。我们的方法基于逐渐的深度变化,而其概念框架是非线性系统中自动兑换的理论,并导致了准冻结状态。确定了三个主要阶段:从小侧带振幅,分离质交叉和绝热转换为椭圆形固定点振荡的轨道的扩增。这三个阶段的分析估计值是从低维近似值获得的,并通过NLSE模拟验证。我们的结果将有助于了解非线性波数据包的动态稳定以及在流体动力学和其他非线性分散培养基中大型波动事件的持久性。

We study the evolution of nonlinear surface gravity water-wave packets developing from modulational instability over an uneven bottom. A nonlinear Schrödinger equation (NLSE) with coefficients varying in space along propagation is used as a reference model. Based on a low-dimensional approximation obtained by considering only three complex harmonic modes, we discuss how to stabilize a one-dimensional pattern in the form of train of large peaks sitting on a background and propagating over a significant distance. Our approach is based on a gradual depth variation, while its conceptual framework is the theory of autoresonance in nonlinear systems and leads to a quasi-frozen state. Three main stages are identified: amplification from small sideband amplitudes, separatrix crossing, and adiabatic conversion to orbits oscillating around an elliptic fixed point. Analytical estimates on the three stages are obtained from the low-dimensional approximation and validated by NLSE simulations. Our result will contribute to understand dynamical stabilization of nonlinear wave packets and the persistence of large undulatory events in hydrodynamics and other nonlinear dispersive media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源