论文标题

具有一致电极放置的廉价表面肌电图套筒可以通过深度学习实现灵巧和稳定的假肢控制

Inexpensive surface electromyography sleeve with consistent electrode placement enables dexterous and stable prosthetic control through deep learning

论文作者

George, Jacob A., Neibling, Anna, Paskett, Michael D., Clark, Gregory A.

论文摘要

常规肌电假体的敏捷性部分受到用于训练控制算法的小数据集的部分限制。表面电极定位的变化使得很难收集一致的数据并随着时间的推移可靠地估计电动机意图。为了应对这些挑战,我们开发了一个廉价,易于底漆的套筒,可以记录32个嵌入式单极电极的健壮且可重复的表面肌电图。嵌入的索环用于将套筒与天然皮肤标记(例如痣,雀斑,疤痕)保持一致。袖子可以在几个小时内以不到60美元的价格制造。来自七个完整参与者的数据表明,套筒提供了14个信噪比,don时间低于11秒,次级中心的精度用于电极放置。此外,在与一位完整参与者的案例研究中,我们使用套筒证明神经网络可以在初始算法训练后263天对六个自由度的同时和比例控制。我们还强调,一致的记录随着时间​​的推移积累以建立大型数据集,可显着提高灵巧性。这些结果表明,使用74层神经网络的深度学习可以显着改善肌电假体控制的灵巧性和稳定性,并且可以很容易地通过廉价的袖子/座位来实例化并进一步验证深度学习技术,并具有一致的记录位置。

The dexterity of conventional myoelectric prostheses is limited in part by the small datasets used to train the control algorithms. Variations in surface electrode positioning make it difficult to collect consistent data and to estimate motor intent reliably over time. To address these challenges, we developed an inexpensive, easy-to-don sleeve that can record robust and repeatable surface electromyography from 32 embedded monopolar electrodes. Embedded grommets are used to consistently align the sleeve with natural skin markings (e.g., moles, freckles, scars). The sleeve can be manufactured in a few hours for less than $60. Data from seven intact participants show the sleeve provides a signal-to-noise ratio of 14, a don-time under 11 seconds, and sub-centimeter precision for electrode placement. Furthermore, in a case study with one intact participant, we use the sleeve to demonstrate that neural networks can provide simultaneous and proportional control of six degrees of freedom, even 263 days after initial algorithm training. We also highlight that consistent recordings, accumulated over time to establish a large dataset, significantly improve dexterity. These results suggest that deep learning with a 74-layer neural network can substantially improve the dexterity and stability of myoelectric prosthetic control, and that deep-learning techniques can be readily instantiated and further validated through inexpensive sleeves/sockets with consistent recording locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源