论文标题
多相谐波函数中的凸度
Convexity in Multivalued Harmonic Functions
论文作者
论文摘要
我们在\ Mathcal {Q}值函数的上下文中研究了三个圆形定理的变体。我们证明了与\ Mathcal {q} valued设置中的L^{2}增长函数有关的一些凸性不等式。还讨论了这些不平等和对实际有价值谐波函数情况的最佳性。
We investigate variants of a Three Circles type Theorem in the context of \mathcal{Q}-valued functions. We prove some convexity inequalities related to the L^{2} growth function in the \mathcal{Q}-valued settings. Optimality of these inequalities and comparsion to the case of real valued harmonic functions is also discussed.