论文标题

具有三个解决方案的一类方程

A class of equations with three solutions

论文作者

Ricceri, Biagio

论文摘要

这是本文获得的结果之一:令$ω\ subset {\ bf r}^n $是一个平稳的界面域,让$ q> 1 $,带$ q <{{n+2} \ fover {n+2} \ fover {n-2}} $ n \ geq 3 $,如果$ n \ geq 3 $,而让$λ_1$ case $λ_1$ $ $ eigenvalue和Δ $ω$ \ cr&\ cr u = 0&on $ \partialΩ$ \。\ cr} $$,然后,对于每一个$λ>λ_1$,对于每一个coNvex set $ s \ subseteq l^{\ infty}(\ infty}(ω)$ dence in $ l^2(ω)$ $ \ case {-ΔU=λ(u^+ - (u^+)^q)+α(x)&in $ω$ \ cr&\ cr&\ cr&\ cr&\ cr u = 0&on $ \partialΩ$ \ cr} $ \ cr} $ \ cr} $ \ cr} $ \ cr}至少具有三个弱解决方案,其中两个是$ h^1_0 $}的全局最小值(均超过$ h^1_0(ω)$}。 {2}} \int_Ω| \ nabla u(x)|^2dx-λ\int_Ω\ left({{{1} \ over {2}}} | )dx- \int_Ωα(x)u(x)dx \ $$其中$ u^+= \ max \ {u,0 \} $。

Here is one of the results obtained in this paper: Let $Ω\subset {\bf R}^n$ be a smooth bounded domain, let $q>1$, with $q<{{n+2}\over {n-2}}$ if $n\geq 3$ and let $λ_1$ be the first eigenvalue of the problem $$\cases{-Δu=λu & in $Ω$ \cr & \cr u=0 & on $\partialΩ$\ .\cr}$$ Then, for every $λ>λ_1$ and for every convex set $S\subseteq L^{\infty}(Ω)$ dense in $L^2(Ω)$, there exists $α\in S$ such that the problem $$\cases{-Δu=λ(u^+-(u^+)^q)+α(x) & in $Ω$ \cr & \cr u=0 & on $\partialΩ$\cr}$$ has at least three weak solutions, two of which are global minima in $H^1_0(Ω)$ of the functional $$u\to {{1}\over {2}}\int_Ω|\nabla u(x)|^2dx-λ\int_Ω\left ({{1}\over {2}}|u^+(x)|^2-{{1}\over {q+1}}|u^+(x)|^{q+1}\right )dx-\int_Ωα(x)u(x)dx\ $$ where $u^+=\max\{u,0\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源