论文标题

基于虚拟域的FEM和切割元素的最佳控制PDE问题的随机几何形状

Random geometries for optimal control PDE problems based on fictitious domain FEMS and cut elements

论文作者

Aretaki, Aikaterini, Karatzas, Efthymios N.

论文摘要

这项工作调查了在不确定域上定义的椭圆形最佳控制问题,并通过虚拟域有限元方法和切割元素离散。该研究的关键要素是考虑到由于挑战性的几何形状,具有迭代方法的最佳控制搜索,对确定性和非确定性水平的系统解决方案的缓慢收敛,以及由于几何变化而引起的系统解决方案的缓慢收敛,以及由于几何变化而导致的系统解决方案,因此管理较差的方程式系统矩阵的通常“禁止”组合,最佳控制搜索。我们克服了所有这些困难,利用适用于未固定网格方法的适当预处理的优势,改进的蒙特卡洛方法的类型,并主要采用嵌入式FEMS的优势,即使发生了几何变化,也基于一次计算的固定背景网格。控制问题的敏感性是通过随机域的介绍,采用准蒙特卡洛法并强调确定性目标状态。采用了变分离散概念,得出了状态,伴随状态和控制的最佳误差估计,以确认剪切有限元方法在挑战几何形状中的效率。还测试了专门针对适合最佳控制问题的未固定有限元离散化而开发的多机构方案的性能。一些基本的预处理应用于来自空间域中状态和伴随状态变化形式的稀疏线性系统。相应的收敛速率以及规定的预处理质量通过数值示例验证。

This work investigates an elliptic optimal control problem defined on uncertain domains and discretized by a fictitious domain finite element method and cut elements. Key ingredients of the study are to manage cases considering the usually computationally "forbidden" combination of poorly conditioned equation system matrices due to challenging geometries, optimal control searches with iterative methods, slow convergence to system solutions on deterministic and non--deterministic level, and expensive remeshing due to geometrical changes. We overcome all these difficulties, utilizing the advantages of proper preconditioners adapted to unfitted mesh methods, improved types of Monte Carlo methods, and mainly employing the advantages of embedded FEMs, based on a fixed background mesh computed once even if geometrical changes are taking place. The sensitivity of the control problem is introduced in terms of random domains, employing a Quasi-Monte Carlo method and emphasizing a deterministic target state. The variational discretization concept is adopted, optimal error estimates for the state, adjoint state, and control are derived that confirm the efficiency of the cut finite element method in challenging geometries. The performance of a multigrid scheme especially developed for unfitted finite element discretizations adapted to the optimal control problem is also tested. Some fundamental preconditioners are applied to the arising sparse linear systems coming from the discretization of the state and adjoint state variational forms in the spatial domain. The corresponding convergence rates along with the quality of the prescribed preconditioners are verified by numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源