论文标题

底部恢复水的稳定性

The stability for an inverse problem of bottom recovering in water-waves

论文作者

Lecaros, R., López-Ríos, J., Ortega, J. H., Zamorano, S.

论文摘要

在本文中,我们处理了一类几何反相问题,以通过对水的自由表面进行一次测量,以进行底部检测。我们在自由表面上的Neumann和/或Dirichlet数据方面发现了围绕两个不同底部之间区域的大小的上限和下边界。从一般水 - 带有侧壁的有界域中的Waves系统开始,我们设法从Neumann Operator的Dirichlet中提出了问题,因此,作为在刚性边界上具有Neumann均匀条件的有界域中的椭圆问题。然后,我们研究了Dirichlet对Neumann图的特性,并分析了所谓的尺寸估计方法。

In this article we deal with a class of geometric inverse problem for bottom detection by one single measurement on the free surface in water--waves. We found upper and lower bounds for the size of the region enclosed between two different bottoms, in terms of Neumann and/or Dirichlet data on the free surface. Starting from the general water--waves system in bounded domains with side walls, we manage to formulate the problem in terms of the Dirichlet to Neumann operator and thus, as an elliptic problem in a bounded domain with Neumann homogeneous condition on the rigid boundary. Then we study the properties of the Dirichlet to Neumann map and analyze the called method of size estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源