论文标题
局部线性控制的预测编码
Predictive Coding for Locally-Linear Control
论文作者
论文摘要
在对许多现实世界决策任务应用最佳控制时,高维观察和未知动态是主要的挑战。可控制的嵌入(LCE)框架通过将观测值嵌入较低维的潜在空间,估算潜在动态,然后直接在潜在空间中执行控制,从而解决了这些挑战。为了确保学习的潜在动力学可以预测下一步观察,所有现有的LCE方法都将重新解码为观察空间并明确执行下一观点预测---一项具有挑战性的高维工作,此外,它引入了大量的滋扰参数(即解码器),这些任务被丢弃在控制过程中。在本文中,我们提出了一种新颖的信息理论方法方法,并从理论上表明可以用预测编码代替明确的下一观察预测。然后,我们使用预测性编码来开发一种无解码器的LCE模型,该模型的潜在动力学可适应局部线性控制。基准任务上的广泛实验表明,我们的模型可靠地学习了可控的潜在空间,与最先进的LCE基线相比,可以带来卓越的性能。
High-dimensional observations and unknown dynamics are major challenges when applying optimal control to many real-world decision making tasks. The Learning Controllable Embedding (LCE) framework addresses these challenges by embedding the observations into a lower dimensional latent space, estimating the latent dynamics, and then performing control directly in the latent space. To ensure the learned latent dynamics are predictive of next-observations, all existing LCE approaches decode back into the observation space and explicitly perform next-observation prediction---a challenging high-dimensional task that furthermore introduces a large number of nuisance parameters (i.e., the decoder) which are discarded during control. In this paper, we propose a novel information-theoretic LCE approach and show theoretically that explicit next-observation prediction can be replaced with predictive coding. We then use predictive coding to develop a decoder-free LCE model whose latent dynamics are amenable to locally-linear control. Extensive experiments on benchmark tasks show that our model reliably learns a controllable latent space that leads to superior performance when compared with state-of-the-art LCE baselines.