论文标题

MVC-NET:具有应用程序的流形值图像的卷积神经网络体系结构

MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued Images With Applications

论文作者

Bouza, Jose J., Yang, Chun-Hao, Vaillancourt, David, Vemuri, Baba C.

论文摘要

几何深度学习近年来引起了极大的关注,部分原因是传统神经网络体系结构不适合的外来数据类型的可用性。本文我们的目标是将卷积神经网络(CNN)概括为在医学成像和计算机视觉应用中通常出现的流动图像案例。明确地,到网络的输入数据是一个图像,每个像素值是Riemannian歧管的样本。为了实现这一目标,我们必须概括传统CNN体系结构的基本构建基础,即加权组合操作。为此,我们开发了一个切线空间组合操作,该操作用于定义我们称之为的歧管值图像,即歧管值卷积(MVC)上的卷积操作。我们证明了MVC操作的理论特性,包括与歧管所接受的等轴测组的作用的等效性,并在MVC层的组成崩溃到单层时表征。我们介绍了如何使用MVC层来构建在流动价值图像上运行的完整的多层神经网络的详细说明,我们称为MVC-net。此外,我们从经验上证明了MVC网络在医学成像和计算机视觉任务中的卓越性能。

Geometric deep learning has attracted significant attention in recent years, in part due to the availability of exotic data types for which traditional neural network architectures are not well suited. Our goal in this paper is to generalize convolutional neural networks (CNN) to the manifold-valued image case which arises commonly in medical imaging and computer vision applications. Explicitly, the input data to the network is an image where each pixel value is a sample from a Riemannian manifold. To achieve this goal, we must generalize the basic building block of traditional CNN architectures, namely, the weighted combinations operation. To this end, we develop a tangent space combination operation which is used to define a convolution operation on manifold-valued images that we call, the Manifold-Valued Convolution (MVC). We prove theoretical properties of the MVC operation, including equivariance to the action of the isometry group admitted by the manifold and characterizing when compositions of MVC layers collapse to a single layer. We present a detailed description of how to use MVC layers to build full, multi-layer neural networks that operate on manifold-valued images, which we call the MVC-net. Further, we empirically demonstrate superior performance of the MVC-nets in medical imaging and computer vision tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源