论文标题

对抗网络流量:评估基于深度学习的网络流量分类的鲁棒性

Adversarial Network Traffic: Towards Evaluating the Robustness of Deep Learning-Based Network Traffic Classification

论文作者

Sadeghzadeh, Amir Mahdi, Shiravi, Saeed, Jalili, Rasool

论文摘要

网络流量分类用于各种应用程序,例如网络流量管理,策略执行和入侵检测系统。尽管大多数应用程序对其网络流量进行了加密,并且其中一些应用程序会动态更改其端口号,机器学习(ML),尤其是基于深度学习的分类器,但在网络流量分类中表现出了令人印象深刻的性能。在本文中,我们评估了基于DL的网络流量分类器对对抗网络流量(ANT)的鲁棒性。 ANT会导致基于DL的网络流量分类器使用通用对抗扰动(UAP)生成方法错误地预测。由于在发送蚂蚁之前不需要缓冲网络流量,因此它是实时生成的。我们将基于DL的网络流量分类的输入空间分为三类:数据包分类,流量内容分类和流动时间序列分类。为了生成蚂蚁,我们提出了三起新的攻击,将UAP注入网络流量。 AdvPad攻击将UAP注入数据包的内容,以评估数据包分类器的稳健性。 Advpay Attack将UAP注入了虚拟数据包的有效载荷,以评估流量内容分类器的鲁棒性。 Advburst Attack注入了特定数量的虚拟数据包,具有基于UAP的制作统计功能的特定虚拟数据包,以评估流动时间序列分类器的稳健性。结果表明,向网络流量注入一点UAP,高度降低了基于DL的网络流量分类器在所有类别中的性能。

Network traffic classification is used in various applications such as network traffic management, policy enforcement, and intrusion detection systems. Although most applications encrypt their network traffic and some of them dynamically change their port numbers, Machine Learning (ML) and especially Deep Learning (DL)-based classifiers have shown impressive performance in network traffic classification. In this paper, we evaluate the robustness of DL-based network traffic classifiers against Adversarial Network Traffic (ANT). ANT causes DL-based network traffic classifiers to predict incorrectly using Universal Adversarial Perturbation (UAP) generating methods. Since there is no need to buffer network traffic before sending ANT, it is generated live. We partition the input space of the DL-based network traffic classification into three categories: packet classification, flow content classification, and flow time series classification. To generate ANT, we propose three new attacks injecting UAP into network traffic. AdvPad attack injects a UAP into the content of packets to evaluate the robustness of packet classifiers. AdvPay attack injects a UAP into the payload of a dummy packet to evaluate the robustness of flow content classifiers. AdvBurst attack injects a specific number of dummy packets with crafted statistical features based on a UAP into a selected burst of a flow to evaluate the robustness of flow time series classifiers. The results indicate injecting a little UAP into network traffic, highly decreases the performance of DL-based network traffic classifiers in all categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源