论文标题
耦合非线性振荡器系统中的离散涡流:电动模型的数值结果
Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model
论文作者
论文摘要
从理论上研究了非线性振荡器阵列上的涡旋相干结构,该结构与弱环上的弱环节连接在一起。通过相对较弱的电容结合的非线性电振荡器的电路已被认为是此类物体的物理实现。数值实验表明,应用于几个振荡器的时间单色外力导致系统中与广泛参数中的绝对背景相对于系统中的长寿命和非动物相互作用的涡流的形成。涡流的动力学取决于通过链路通过链路对相对侧面的“耦合”方法,该方法决定了所得歧管的拓扑结构(torus,klein瓶,投影平面,möbius带,möbius带,环或磁盘)。
Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against a quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of "coupling" of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).