论文标题

迈向Sachdev-ye-Kitaev模型的量子模拟

Towards quantum simulation of Sachdev-Ye-Kitaev model

论文作者

Cao, Ye, Zhou, Yi-Neng, Shi, Ting-Ting, Zhang, Wei

论文摘要

我们研究了Sachdev-Ye-Kitaev(SYK)模型的简化版本,该模型具有通过精确的对角度化的实际相互作用。假定相互作用强度是从具有有限分离的离散值中选择的,而不是满足连续的高斯分布。通过增加离散分离,可以观察到从混乱状态到可集成状态的量子相变。在临界值之下,离散模型可以很好地再现原始SYK模型的各种物理量,包括地面纠缠的体积定律,水平分布,热力学熵和按时级相关(OTOC)函数。对于最高$ n = 20 $的尺寸系统,我们发现过渡点随系统尺寸而增加,这表明相对较弱的相互作用可以稳定混乱阶段。我们的发现显着放松了SYK模型实现的严格条件,并且可以将各种实验建议的复杂性降低到现实范围。

We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model, including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy, and out-of-time-order correlation (OTOC) functions. For systems of size up to $N=20$, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源