论文标题
可解释可扩展的机器学习算法,用于使用fMRI数据检测自闭症谱系障碍
Explainable and Scalable Machine-Learning Algorithms for Detection of Autism Spectrum Disorder using fMRI Data
论文作者
论文摘要
诊断自闭症谱系障碍(ASD)是一个具有挑战性的问题,纯粹基于症状的行为描述(DSM-5/ICD-10),并要求线人在不同情况下(例如,家庭,学校)观察患有混乱的儿童。许多局限性(例如,线人差异,缺乏评估指南,线人偏见)对当前的诊断实践有可能导致对该疾病的过度,不足或误诊。神经影像技术的进步为对该疾病的更客观评估提供了关键的一步。先前的研究提供了有力的证据,表明从ASD患者中收集的结构和功能磁共振成像(MRI)数据表现出在局部和全局空间和大脑的时间神经模式上不同的特征。我们提出的深度学习模型ASD诊断表现出对通过神经型扫描分类的ASD脑扫描的始终高精度。我们首次综合传统的机器学习和深度学习技术,使我们能够将ASD生物标志物与MRI数据集隔离。我们的方法称为自动-ASD-NETWORK,结合了深度学习和支持向量机(SVM)来对ASD扫描进行分类。这种可解释的模型将有助于解释深度学习技术为神经科学家的知识发现以及对临床医生的透明分析的决定。
Diagnosing Autism Spectrum Disorder (ASD) is a challenging problem, and is based purely on behavioral descriptions of symptomology (DSM-5/ICD-10), and requires informants to observe children with disorder across different settings (e.g. home, school). Numerous limitations (e.g., informant discrepancies, lack of adherence to assessment guidelines, informant biases) to current diagnostic practices have the potential to result in over-, under-, or misdiagnosis of the disorder. Advances in neuroimaging technologies are providing a critical step towards a more objective assessment of the disorder. Prior research provides strong evidence that structural and functional magnetic resonance imaging (MRI) data collected from individuals with ASD exhibit distinguishing characteristics that differ in local and global spatial, and temporal neural-patterns of the brain. Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans. We have for the first time integrated traditional machine-learning and deep-learning techniques that allows us to isolate ASD biomarkers from MRI data sets. Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans. Such interpretable models would help explain the decisions made by deep-learning techniques leading to knowledge discovery for neuroscientists, and transparent analysis for clinicians.