论文标题
riemannian歧管上弱排斥相互作用能量的最小化的离散性
Discreteness of the minimizers of weakly repulsive interaction energies on Riemannian manifolds
论文作者
论文摘要
结果表明,衡量标准的支撑量最大程度地减少了弱排斥能的能量,而下面的截面曲率却没有浓度点。这扩展了Björck和Carrillo,Figalli和Patacchini在欧几里得空间上的这种能量的结果,并补充了Bilyk,dai和Matzke在Bilyk,dai和Matzke上的地理Riesz能量最小化的结果。
It is shown that the supports of measures minimizing weakly repulsive energies on Riemannian manifolds with sectional curvature bounded below do not have concentration points. This extends the results of Björck and Carrillo, Figalli, and Patacchini for such energies on the Euclidean space, and complements the results about the discreteness of minimizers of the geodesic Riesz energy on the sphere by Bilyk, Dai, and Matzke.