论文标题
精确的可编程量子模拟带有光学晶格
Precise Programmable Quantum Simulations with Optical Lattices
论文作者
论文摘要
我们提出了一种有效的方法,可以基于可编程的数字微米磁发设备(DMD)技术精确模拟使用光学晶格的紧密结合模型。我们的方法由Wegner-Flow的子例程组成,启用了针对给定光学潜力的紧密结合模型的精确提取,以及调整目标模型潜力的反向工程步骤,为此我们开发了经典算法以实现高精度和高效率。通过在协议中系统地校准的Wannier功能的重新归一化和高频带效应,我们显示了具有可编程的现场能量和隧道的紧密结合模型,可以用与DMD技术集成的光学晶格进行精确模拟。通过数值模拟,我们证明我们的方法将促进具有前所未有的可编程性和基于原子的玻色子采样的定位物理学的量子模拟,以说明量子计算优势。我们希望这种方法将为基于光学晶格的大规模和精确的可编程量子模拟铺平道路。
We present an efficient approach to precisely simulate tight binding models with optical lattices, based on programmable digital-micromirror-device (DMD) techniques. Our approach consists of a subroutine of Wegner-flow enabled precise extraction of a tight-binding model for a given optical potential, and a reverse engineering step of adjusting the potential for a targeting model, for both of which we develop classical algorithms to achieve high precision and high efficiency. With renormalization of Wannier functions and high band effects systematically calibrated in our protocol, we show the tight-binding models with programmable onsite energies and tunnelings can be precisely simulated with optical lattices integrated with the DMD techniques. With numerical simulation, we demonstrate that our approach would facilitate quantum simulation of localization physics with unprecedented programmability and atom-based boson sampling for illustration of quantum computational advantage. We expect this approach would pave a way towards large-scale and precise programmable quantum simulations based on optical lattices.