论文标题

基于深度差异图像和PCANET的强大不平衡SAR图像更改检测方法

A Robust Imbalanced SAR Image Change Detection Approach Based on Deep Difference Image and PCANet

论文作者

Zhang, Xinzheng, Su, Hang, Zhang, Ce, Atkinson, Peter M., Tan, Xiaoheng, Zeng, Xiaoping, Jian, Xin

论文摘要

在这项研究中,为基于深度学习的不平衡多时间合成孔径雷达(SAR)图像提供了一种新颖的鲁棒变化检测方法。我们的主要贡献是开发一种新的方法来生成差异图像和平行模糊C均值(FCM)聚类方法。我们提出的方法的主要步骤如下:1)受深度学习中的卷积和合并的启发,基于参数化的合并,获得了深层差异图像(DDI),从而导致比传统差异图像更好地抑制斑点和特征。 2)将两个不同的参数Sigmoid非线性映射应用于DDI,以获取两个映射的DDI。并行FCM在这两个映射的DDI上使用以获得三种类型的伪标签像素,即更改的像素,未更改的像素和中间像素。 3)对具有支持向量机(SVM)的PCANET进行了训练,以对中间像素进行分类以进行更改或不变。三个不平衡的多时间SAR图像集用于更改检测实验。实验结果表明,所提出的方法对于不平衡的SAR数据是有效且鲁棒的,并且最多达到99.52%的变化检测准确性优于大多数最新方法。

In this research, a novel robust change detection approach is presented for imbalanced multi-temporal synthetic aperture radar (SAR) image based on deep learning. Our main contribution is to develop a novel method for generating difference image and a parallel fuzzy c-means (FCM) clustering method. The main steps of our proposed approach are as follows: 1) Inspired by convolution and pooling in deep learning, a deep difference image (DDI) is obtained based on parameterized pooling leading to better speckle suppression and feature enhancement than traditional difference images. 2) Two different parameter Sigmoid nonlinear mapping are applied to the DDI to get two mapped DDIs. Parallel FCM are utilized on these two mapped DDIs to obtain three types of pseudo-label pixels, namely, changed pixels, unchanged pixels, and intermediate pixels. 3) A PCANet with support vector machine (SVM) are trained to classify intermediate pixels to be changed or unchanged. Three imbalanced multi-temporal SAR image sets are used for change detection experiments. The experimental results demonstrate that the proposed approach is effective and robust for imbalanced SAR data, and achieve up to 99.52% change detection accuracy superior to most state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源