论文标题

一种用于计算裂缝韧性和R-Curves细胞材料的多功能数值方法

A versatile numerical approach for calculating the fracture toughness and R-curves of cellular materials

论文作者

Hsieh, Meng-Ting, Deshpande, Vikram S., Valdevit, Lorenzo

论文摘要

我们开发了一种数值方法,用于计算脆性和弹性晶格材料的模式曲线,并揭示了晶格拓扑,相对密度和组成材料行为对2D各向同性晶格的增强响应的影响。该方法基于单边弯曲(SENB)标本上J积分的有限元计算,其单个条将单个条模型为具有线性弹性或幂律弹性塑料本构型和最大应变损伤模型的光束。出现了三种2D各向同性晶格拓扑(三角形,六角形和kagome)和两种组成材料(代表脆性陶瓷(碳化硅)和一种应变硬化的弹性塑料金属(钛合金))。我们为所有晶格提取初始断裂韧性和R曲面,并表明(i)弹性脆性三角形晶格表现出韧性(升高的R-Curve),(ii)弹性塑料三角形晶格表现出明显的韧性,而弹性弹性型甲状腺质晶格以脆弱的方式失败。我们表明,这种失败行为的差异可以通过在裂纹传播时生长的塑料区域的大小来解释,并得出结论,晶格(脆性与延性)中裂纹的性质既取决于组成材料和晶格结构。虽然显示了2D桁架晶格的结果,但只要裂纹尖端位于单位电池的空白空间内,就可以轻松地将所提出的方法应用于3D桁架和壳晶格。

We develop a numerical methodology for the calculation of mode-I R-curves of brittle and elastoplastic lattice materials, and unveil the impact of lattice topology, relative density and constituent material behavior on the toughening response of 2D isotropic lattices. The approach is based on finite element calculations of the J-integral on a single-edge-notch-bend (SENB) specimen, with individual bars modeled as beams having a linear elastic or a power-law elasto-plastic constitutive behavior and a maximum strain-based damage model. Results for three 2D isotropic lattice topologies (triangular, hexagonal and kagome) and two constituent materials (representative of a brittle ceramic (silicon carbide) and a strain hardening elasto-plastic metal (titanium alloy)) are presented. We extract initial fracture toughness and R-curves for all lattices and show that (i) elastic brittle triangular lattices exhibit toughening (rising R-curve), and (ii) elasto-plastic triangular lattices display significant toughening, while elasto-plastic hexagonal lattices fail in a brittle manner. We show that the difference in such failure behavior can be explained by the size of the plastic zone that grows upon crack propagation, and conclude that the nature of crack propagation in lattices (brittle vs ductile) depends both on the constituent material and the lattice architecture. While results are presented for 2D truss-lattices, the proposed approach can be easily applied to 3D truss and shell-lattices, as long as the crack tip lies within the empty space of a unit cell.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源