论文标题
具有不受信任预测的在线公制算法
Online metric algorithms with untrusted predictions
论文作者
论文摘要
机器学习的预测因素,尽管在类似培训数据的输入方面取得了非常好的结果,但在所有情况下都无法提供完美的预测。尽管如此,基于此类预测因素的决策系统不仅需要从良好的预测中受益,而且还需要在预测不足时取得不错的表现。在本文中,我们建议对任意度量任务系统(MTS)(例如,Caching,K-Server和凸面的追逐)进行预测设置,并在线上匹配在线匹配。我们利用在线算法理论中的结果来展示如何使设置可靠。特别是用于缓存的,我们提出了一种算法,其性能作为预测误差的函数,其指数优于一般MTS可以实现的算法。最后,我们对现实世界数据集的方法进行了经验评估,这表明了实用性。
Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only to benefit from good predictions but also to achieve a decent performance when the predictions are inadequate. In this paper, we propose a prediction setup for arbitrary metrical task systems (MTS) (e.g., caching, k-server and convex body chasing) and online matching on the line. We utilize results from the theory of online algorithms to show how to make the setup robust. Specifically for caching, we present an algorithm whose performance, as a function of the prediction error, is exponentially better than what is achievable for general MTS. Finally, we present an empirical evaluation of our methods on real world datasets, which suggests practicality.