论文标题
在环形磁场中平均值的角动量和旋转能
Angular momentum and rotational energy of meanflows in toroidal magnetic fields
论文作者
论文摘要
我们得出了在环形的平均角动量的平均平均方程,不一定是轴对称磁场平衡。我们发现,角动量的成分是由EXB和平行流速的协变量和环形组分给出的,我们分别确定了所有这些组件的所有相关应力张量,扭矩和源术语。我们的结果以先前发现的雷诺应力(如磁管或平行的EXB应力)以及密度梯度驱动项等雷诺应力的最爱应力概括。此外,我们将磁性剪切识别为角度EXB角动量的来源,并讨论镜子和洛伦兹力。在这里,我们发现大地传输项,弦轴旋转项和离子轨损耗项都是洛伦兹力的一部分,实际上是一个和同一术语。 在讨论与角速度的关系时,我们借助通量表面的第一种基本形式来构建惯性张量。反过来,惯性张量用于构建血浆的\ exb表面流动的磁通平均旋转能。由于惯性张量,该旋转能的演变具有对先前结果的校正。特别是,这种校正表明,高场侧的密度源对纬向流能产生的贡献要比在低场侧的贡献要大得多。
We derive the balance equation for the Favre averaged angular momentum in toroidal not necessarily axisymmetric magnetic field equilibria. We find that the components of angular momentum are given by the covariant poloidal and toroidal components of ExB and parallel flow velocities and we separately identify all relevant stress tensors, torques and source terms for each of these components. Our results feature the Favre stress generalisations of previously found Reynolds stresses like the diamagnetic or parallel ExB stress, as well as the density gradient drive term. Further, we identify the magnetic shear as a source of poloidal ExB angular momentum and discuss the mirror and the Lorentz force. Here, we find that the geodesic transfer term, the Stringer-Winsor spin-up term and the ion-orbit loss term are all part of the Lorentz force and are in fact one and the same term. Discussing the relation to angular velocity we build the inertia tensor with the help of the first fundamental form of a flux-surface. In turn, the inertia tensor is used to construct a flux-surface averaged rotational energy for \ExB surface flows of the plasma. The evolution of this rotational energy features a correction of previous results due to the inertia tensor. In particular, this correction suggests that density sources on the high-field side contribute much more to zonal flow energy generation than on the low field side.