论文标题
深度学习框架,用于固体力学中的解决方案和发现
A deep learning framework for solution and discovery in solid mechanics
论文作者
论文摘要
我们介绍了一类深度学习的应用,即物理学知情的神经网络(PINN)在固体力学中的学习和发现中的应用。我们解释了如何将动量平衡和本构关系纳入PINN,并详细探讨了线性弹性的应用,并通过展示Von〜Mises弹性性的示例来说明其扩展到非线性问题。虽然常见的PINN算法基于训练一个深神网络(DNN),但我们提出了一个多网络模型,该模型可以更准确地表示场变量。为了验证模型,我们测试了从分析和数值参考解决方案生成的合成数据的框架。我们研究了PINN模型的收敛性,并表明与经典的低阶有限元方法(FEM)相比,同几何分析(IGA)具有较高的准确性和收敛特性。我们还展示了转移学习框架的适用性,并在网络重新训练期间发现了极大的加速融合。最后,我们发现尊重物理学会提高鲁棒性:仅在几个参数上接受培训时,我们发现Pinn模型可以准确预测网络新参数的解决方案 - 因此指出了该框架在敏感性分析和替代建模中的重要应用。
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von~Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network---thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling.