论文标题
全球适应性,以在无限prandtl数字极限的高柱结构的快速旋转对流模型
Global well-posedness for a rapidly rotating convection model of tall columnar structure in the limit of infinite Prandtl number
论文作者
论文摘要
我们分析了一个高柱结构的三维快速旋转对流模型,即无限prandtl数字的极限,即当动量扩散率比热扩散率更为主导时。因此,速度场的动力学以比温度波动更快的时间尺度进行,并且在极限下,速度场正式正式调整为热波动。我们证明了薄弱解决方案和强大解决方案的全球能力良好。
We analyze a three-dimensional rapidly rotating convection model of tall columnar structure in the limit of infinite Prandtl number, i.e., when the momentum diffusivity is much more dominant than the thermal diffusivity. Consequently, the dynamics of the velocity field takes place at a much faster time scale than the temperature fluctuation, and at the limit the velocity field formally adjusts instantaneously to the thermal fluctuation. We prove the global well-posedness of weak solutions and strong solutions to this model.