论文标题

$ K $ -TREE线图的连接性

$k$-tree connectivity of line graphs

论文作者

Li, Shasha

论文摘要

对于图$ g =(v,e)$和set $ s \ subseteq v(g)大小至少$ 2 $,$ s $ steiner tree $ t $ t $是$ g $的子图,是$ s \ subseteq v(t)$的树。如果$ e(t)\ cap e(t)\ cap e(t')= \ emptyset $和$ v(t)\ cap v(t)\ cap v(t)= s $(如果$ e(t)\ e(t)\ e(t)\ cap e(t'(t)\ cap e(t')= \ emberyset $,则两个$ s $ steiner树$ t $ $ t $ $ t $ $ t $ $ t $ $ t $ $ t $ $ t $ t $ $ t $ $ t $ t $ $ t $ t $ $ t $ t $ $ t $ t $ $ t $ t $ $ t $ t $和$ t'令$κ_G(s)$(resp。Up。cy /λ_g(s)$)表示内部分离的最大数量(resp。Edge-disechoint)$ s $ s $ steiner树,$ g $。然后将$ k $ -tree连接$κ__k(g)$($ k $ -k $ -tree边缘连接性$ g $)的$ g $定义为最低$κ__g(s)$(s)$(s)$(resp。$λ_g(s)$),其中$ s $ s $ s $ ranges yes $ k $ k $ k $ - $ subsubs $ v)在[H. Li,B。Wu,J。Meng,Y. Ma,Steiner树包装号码和树木连接性,离散数学。 341(2018),1945--1951],作者推测,如果连接的图形$ g $至少具有$ k $ dertices和至少$ k $ edge,则$κ__k(l(g))\ geq Qλ_k(g)$,对于任何$ k \ geq 2 $,where $ k \ geq 2 $,where $ l(g)$ l(g)$ l是$ g $ $ g $。在本文中,我们确认了这个猜想,并证明了界限是锋利的。

For a graph $G=(V,E)$ and a set $S\subseteq V(G)$ of size at least $2$, an $S$-Steiner tree $T$ is a subgraph of $G$ that is a tree with $S\subseteq V(T)$. Two $S$-Steiner trees $T$ and $T'$ are internally disjoint (resp. edge-disjoint) if $E(T)\cap E(T')=\emptyset$ and $V(T)\cap V(T')=S$ (resp. if $E(T)\cap E(T')=\emptyset$). Let $κ_G (S)$ (resp. $λ_G (S)$) denote the maximum number of internally disjoint (resp. edge-disjoint) $S$-Steiner trees in $G$. The $k$-tree connectivity $κ_k(G)$ (resp. $k$-tree edge-connectivity $λ_k(G)$) of $G$ is then defined as the minimum $κ_G (S)$ (resp. $λ_G (S)$), where $S$ ranges over all $k$-subsets of $V(G)$. In [H. Li, B. Wu, J. Meng, Y. Ma, Steiner tree packing number and tree connectivity, Discrete Math. 341(2018), 1945--1951], the authors conjectured that if a connected graph $G$ has at least $k$ vertices and at least $k$ edges, then $κ_k(L(G))\geq λ_k(G)$ for any $k\geq 2$, where $L(G)$ is the line graph of $G$. In this paper, we confirm this conjecture and prove that the bound is sharp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源