论文标题

纠缠的双Quibit Bohmian系统中的混乱和怪异性

Chaos and ergodicity in an entangled two-qubit Bohmian system

论文作者

Tzemos, Athanasios C., Contopoulos, George

论文摘要

我们详细研究了混乱的发作和各种纠缠程度的双Qubit Systems的纠缠状态中的单个Bohmian轨迹形成的概率度量。量子系统由具有非理性频率的1-D谐波振荡器的相干状态组成。在弱纠缠的状态中,混乱通过了连续的lissajous样子之间的波哈米亚轨迹的突然跳跃来体现。这些跳跃通过“鼻点-X点复合物”机制成功解释。在强烈的纠缠状态下,波哈米亚轨迹的混乱形式在短时间后表现出来。然后,我们研究了Bohmian轨迹的集合的混合特性与满足Born统治的最初条件。轨迹点最初分布在两组$ s_1 $和$ s_2 $的情况下,并具有不相交的支持,但随着时间的流逝,每当遇到波函数的节点点时,它们都会突然混合。然后,在不违反Born的规则的情况下,交换了很大一部分轨迹点。最后,我们提供了强烈的数值指示,在该系统中,纠缠的主要效果是单个Bohmian轨迹中的千古化为$ t \ to \ infty $:不同的初始条件导致轨迹点相同的限制分布。

We study in detail the onset of chaos and the probability measures formed by individual Bohmian trajectories in entangled states of two-qubit systems for various degrees of entanglement. The qubit systems consist of coherent states of 1-d harmonic oscillators with irrational frequencies. In weakly entangled states chaos is manifested through the sudden jumps of the Bohmian trajectories between successive Lissajous-like figures. These jumps are succesfully interpreted by the `nodal point-X-point complex' mechanism. In strongly entangled states, the chaotic form of the Bohmian trajectories is manifested after a short time. We then study the mixing properties of ensembles of Bohmian trajectories with initial conditions satisfying Born's rule. The trajectory points are initially distributed in two sets $S_1$ and $S_2$ with disjoint supports but they exhibit, over the course of time, abrupt mixing whenever they encounter the nodal points of the wavefunction. Then a substantial fraction of trajectory points is exchanged between $S_1$ and $S_2$, without violating Born's rule. Finally, we provide strong numerical indications that, in this system, the main effect of the entanglement is the establishment of ergodicity in the individual Bohmian trajectories as $t\to\infty$: different initial conditions result to the same limiting distribution of trajectory points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源