论文标题

不变的calabi-yau结构在刺穿的综合对称空间上

Invariant Calabi-Yau structures on punctured complexified symmetric spaces

论文作者

Koike, Naoyuki

论文摘要

在本文中,我们表明$ G $ -INVARIANT CALABI-YAU结构$ G^{\ Mathbb C}/k^{\ Mathbb C} $ symmetric Space $ G/K $紧凑型类型的类型是由Monge-Amp $ \ frive的解决方案构建的,该类型是由monge-amp $ \ frive \ frive \ frive of formange o。此外,如果$ g/k $等于一两个,我们对Monge-Amp $ \ grave {\ rm e} $ re type等式进行明确描述。此外,我们证明了Monge-Amp $ \ grave {\ rm e} $ re type方程的解决方案的存在。

In this paper, we show that $G$-invariant Calabi-Yau structures on the complexification $G^{\mathbb C}/K^{\mathbb C}$ of a symmetric space $G/K$ of compact type are constructed from solutions of a Monge-Amp$\grave{\rm e}$re type equation. Also, we give an explicit descriptions of the Monge-Amp$\grave{\rm e}$re type equation in the case where the rank of $G/K$ is equal to one or two. Furthermore, we prove the existence of solutions of the Monge-Amp$\grave{\rm e}$re type equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源