论文标题
强烈分级的群体和定向图代数
Strongly graded groupoid and directed graph algebras
论文作者
论文摘要
我们表明,当且仅当相应的Steinberg代数是一个强烈分级的戒指时,当分级ample groupoid的$ c^*$ - 代数是一个强烈的$ c^*$ - 代数。我们应用此结果以获取有关Leavitt路径代数和$ C^*$ - 任意图的代数的定理。
We show the reduced $C^*$-algebra of a graded ample groupoid is a strongly graded $C^*$-algebra if and only if the corresponding Steinberg algebra is a strongly graded ring. We apply this result to get a theorem about the Leavitt path algebra and $C^*$-algebra of an arbitrary graph.