论文标题

通过自适应图学习嵌入无监督的图

Unsupervised Graph Embedding via Adaptive Graph Learning

论文作者

Zhang, Rui, Zhang, Yunxing, Li, Xuelong

论文摘要

图形自动编码器(GAE)是表示图形嵌入的表示图表的强大工具。但是,GAE的性能非常取决于图结构的质量,即邻接矩阵的质量。换句话说,当邻接矩阵不完整或受到干扰时,GAE的性能会差。在本文中,提出了两种新颖的无监督图嵌入方法,即通过自适应图学习(BAGE)(BAGE)嵌入的无监督图嵌入以及通过变分自适应图形学习(VBAGE)的无监督图嵌入。所提出的方法扩展了GAE在图形嵌入中的应用范围,即在没有图形结构的一般数据集中。同时,自适应学习机制可以初始化邻接矩阵而不会受到参数影响。除此之外,潜在表示嵌入了拉普拉斯图结构中,以保留矢量空间中图的拓扑结构。此外,当原始图形结构不完整时,邻接矩阵可以进行自学以更好地嵌入性能。通过自适应学习,所提出的方法对图形结构更为强大。几个数据集的实验研究验证了我们的设计,并证明我们的方法的表现要优于基线,从而超过了节点群集,节点分类和图形可视化任务。

Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding. However, the performance of GAEs is very dependent on the quality of the graph structure, i.e., of the adjacency matrix. In other words, GAEs would perform poorly when the adjacency matrix is incomplete or be disturbed. In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed. The proposed methods expand the application range of GAEs on graph embedding, i.e, on the general datasets without graph structure. Meanwhile, the adaptive learning mechanism can initialize the adjacency matrix without be affected by the parameter. Besides that, the latent representations are embedded in the laplacian graph structure to preserve the topology structure of the graph in the vector space. Moreover, the adjacency matrix can be self-learned for better embedding performance when the original graph structure is incomplete. With adaptive learning, the proposed method is much more robust to the graph structure. Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源