论文标题
热网:用热图像在语义分割中桥接日夜域间隙
HeatNet: Bridging the Day-Night Domain Gap in Semantic Segmentation with Thermal Images
论文作者
论文摘要
大多数基于学习的语义分割方法都针对白天场景和有利的照明条件进行了优化。然而,现实世界中的驾驶场景需要不利的环境条件,例如夜间照明或眩光,这仍然是现有方法的挑战。在这项工作中,我们提出了一个可以在白天和夜间应用的多模式语义分割模型。为此,除了RGB图像外,我们还利用热图像,使我们的网络明显更强。我们通过利用现有的白天RGB数据表并提出一种教师学生培训方法来避免对夜间图像进行昂贵的注释,该方法将数据集的知识转移到了夜间域。我们进一步采用了一种域适应方法来对齐整个领域的特征空间,并提出了一种新颖的两阶段训练方案。此外,由于缺乏自动驾驶的热数据,我们提出了一个新的数据集,其中包括20,000多个时间同步和对齐的RGB-thermal图像对。在这种情况下,我们还提出了一种新型的无目标校准方法,该方法允许自动鲁棒的外部和内在的热摄像头校准。除其他外,我们使用新数据集来显示夜间语义细分的最新结果。
The majority of learning-based semantic segmentation methods are optimized for daytime scenarios and favorable lighting conditions. Real-world driving scenarios, however, entail adverse environmental conditions such as nighttime illumination or glare which remain a challenge for existing approaches. In this work, we propose a multimodal semantic segmentation model that can be applied during daytime and nighttime. To this end, besides RGB images, we leverage thermal images, making our network significantly more robust. We avoid the expensive annotation of nighttime images by leveraging an existing daytime RGB-dataset and propose a teacher-student training approach that transfers the dataset's knowledge to the nighttime domain. We further employ a domain adaptation method to align the learned feature spaces across the domains and propose a novel two-stage training scheme. Furthermore, due to a lack of thermal data for autonomous driving, we present a new dataset comprising over 20,000 time-synchronized and aligned RGB-thermal image pairs. In this context, we also present a novel target-less calibration method that allows for automatic robust extrinsic and intrinsic thermal camera calibration. Among others, we employ our new dataset to show state-of-the-art results for nighttime semantic segmentation.