论文标题

hemlets posh:以3D人体姿势和形状估计的学习零件以中心的热图三重

HEMlets PoSh: Learning Part-Centric Heatmap Triplets for 3D Human Pose and Shape Estimation

论文作者

Zhou, Kun, Han, Xiaoguang, Jiang, Nianjuan, Jia, Kui, Lu, Jiangbo

论文摘要

从单个图像中估算3D人的姿势是一项具有挑战性的任务。这项工作试图通过引入以中间状态为中心的热图三重态(HEMLETS)来解决将检测到的2D接头提升到3D空间的不确定性,从而缩短了2D观察和3D解释之间的差距。下摆利用三个关节热图来表示每个骨骼体部件的末端关节的相对深度信息。在我们的方法中,首先对卷积网络(Convnet)进行了训练,可以从输入图像中预测半身,然后进行体积的关节热图回归。我们利用积分操作来从体积热图中提取联合位置,以确保端到端学习。尽管网络设计的简单性,但定量比较显示出比最佳级别方法的性能改善(例如,人为360万美元)。所提出的方法自然支持使用“野外”图像的训练,其中仅提供骨骼关节的弱宣布的相对深度信息。这进一步提高了我们的模型的概括能力,这是通过对户外图像的定性比较来验证的。为了利用姿势估计的强度,我们进一步设计并附加了一个浅而有效的网络模块,以回归身体姿势和形状的SMPL参数。我们将整个基于大胆的人姿势和塑造恢复管道下摆的the姿势称为POSH。对现有人体恢复基准的广泛定量和定性实验证明了使用我们的hemlets posh方法获得的最新结果是合理的。

Estimating 3D human pose from a single image is a challenging task. This work attempts to address the uncertainty of lifting the detected 2D joints to the 3D space by introducing an intermediate state-Part-Centric Heatmap Triplets (HEMlets), which shortens the gap between the 2D observation and the 3D interpretation. The HEMlets utilize three joint-heatmaps to represent the relative depth information of the end-joints for each skeletal body part. In our approach, a Convolutional Network (ConvNet) is first trained to predict HEMlets from the input image, followed by a volumetric joint-heatmap regression. We leverage on the integral operation to extract the joint locations from the volumetric heatmaps, guaranteeing end-to-end learning. Despite the simplicity of the network design, the quantitative comparisons show a significant performance improvement over the best-of-grade methods (e.g. $20\%$ on Human3.6M). The proposed method naturally supports training with "in-the-wild" images, where only weakly-annotated relative depth information of skeletal joints is available. This further improves the generalization ability of our model, as validated by qualitative comparisons on outdoor images. Leveraging the strength of the HEMlets pose estimation, we further design and append a shallow yet effective network module to regress the SMPL parameters of the body pose and shape. We term the entire HEMlets-based human pose and shape recovery pipeline HEMlets PoSh. Extensive quantitative and qualitative experiments on the existing human body recovery benchmarks justify the state-of-the-art results obtained with our HEMlets PoSh approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源